以太坊通信协议 以太坊使用哪种共识协议
一、以太坊stratum协议原理
参照比特币的 stratum协议和 NiceHash的stratum协议规范编写了一版以太坊版本的stratum协议说明.
stratum协议是目前最常用的矿机和矿池之间的TCP通讯协议。
以太坊是一个去中心化的网络架构,通过安装Mist客户端的节点来转发新交易和新区块。而矿机、矿池也同时形成了另一个网络,我们称之为矿工网络。
矿工网络分成矿机、矿池、钱包等几个主要部分,有时矿池软件与钱包安装在一起,可合称为矿池。
矿机与矿池软件之间的通讯协议是 stratum,而矿池软件与钱包之间的通讯是 bitcoinrpc接口。
stratum是 JSON为数据格式.
矿机启动,首先以 mining.subscribe方法向矿池连接,用来订阅工作。
矿池以 mining.notify返回订阅号、ExtraNonce1和ExtraNonce2_size。
Client:
Server:
其中:
ae6812eb4cd7735a302a8a9dd95cf71f是订阅号;
080c是 extranonce,Extranonce可能最大3字节;
矿机以 mining.authorize方法,用某个帐号和密码登录到矿池,密码可空,矿池返回 true登录成功。该方法必须是在初始化连接之后马上进行,否则矿机得不到矿池任务。
Client:
Server:
难度调整由矿池下发给矿机,以 mining.set_difficulty方法调整难度, params中是难度值。
Server:
矿机会在下一个任务时采用新难度,矿池有时会马上下发一个新任务并且把清理任务设为true,以便矿机马上以新难度工作。
该命令由矿池定期发给矿机,当矿机以 mining.subscribe方法登记后,矿池应该马上以 mining.notify返回该任务。
Server:
任务ID: bf0488aa;
seedhash: abad8f99f3918bf903c6a909d9bbc0fdfa5a2f4b9cb1196175ec825c6610126c。每一个任务都发送一个seedhash来支持尽可能多的矿池,这可能会很快地在货币之间交换。
headerhash: 645cf20198c2f3861e947d4f67e3ab63b7b2e24dcc9095bd9123e7b33371f6cc。
boolean cleanjobs: true。如果设为true,那么矿工需要清理任务队列,并立即开始从事新提供的任务,因为所有旧的任务分享都将导致陈旧的分享错误。如果是 false则等当前任务结束才开始新任务。
矿工使用seedhash识别DAG,然后带着headerhash,extranonce和自己的minernonce寻找低于目标的share(这是由提供的难度而产生的)。
矿机找到合法share时,就以” mining.submit“方法向矿池提交任务。矿池返回true即提交成功,如果失败则error中有具体原因。
Client:
任务ID: bf0488aa
minernonce: 6a909d9bbc0f。注意minernonce是6个字节,因为提供的extranonce是2个字节。如果矿池提供3字节的extranonce,那么minernonce必须是5字节
Server:
一般的矿机与矿池通讯过程就如下所示:
二、以太坊如何进行隐私保护
以太坊如何进行隐私保护?
作为目前全球最受欢迎的智能合约平台,以太坊在区块链领域中已占据了重要的地位。但是,长期以来,以太坊一直面临隐私保护的问题,因为其区块链技术使得交易记录对所有人都是公开的。此外,因为在以太坊上执行的智能合约程序也需要公开访问,因此很难保护用户的个人信息。那么,以太坊如何进行隐私保护呢?
一种解决方法是使用zk-SNARKs协议。该协议可用于构建保密交易,其流程大致如下:
首先,使用zk-SNARKs通信协议加密将交易信息隐藏起来,然后该加密信息被发送到区块链上。到了区块链上之后,矿工会进行验证处理,以确保交易信息的正确性。在有效性验证通过之后,交易信息将被添加到区块链中。由于加密之后的交易信息对于除验证矿工和交易双方之外的其他人都是不可见的,因此可以有效地保护交易的隐私。
除此之外,Siphon协议也是保护以太坊隐私的一种方案。Siphon基于“状态通道”技术,可以通过在智能合约执行期间在两方之间建立通道,来实现快速并且私密地执行交易。这种方式也可以帮助交易双方隐藏交易的内容,从而提高交易的隐私性。
此外,以太坊的开发者正在积极研究其他方案来加强隐私保护。例如,Mimblewimble协议可用于创建保密的区块链,从而实现安全的交易,同时保护用户的隐私。
总之,以太坊作为一种基于区块链的智能合约平台,确实存在隐私保护的挑战。但是,经过不断的技术发展和研究,已经有了一些行之有效的方案来解决这些问题。在未来,以太坊的开发者还将继续接受挑战并探索更多的隐私保护方案,以满足用户的需求。
三、EIP协议是什么
EIP协议在区块链和工业应用领域有着不同的含义。在以太坊区块链中,EIP全称为Ethereum Improvement Proposals,它是推动网络发展的核心机制。这个协议是开发者和社区成员提出和讨论改进以太坊想法的平台,通过一套标准流程,无论是细微的优化还是重大变革,都能转化为实际的协议更新。EIP分为六类提案:核心、网络、接口、ERC、元信息和非实质性建议,体现了社区的创新和协作精神。
另一方面,EIP在工业网络环境中,即Ethernet/IP,是一种基于TCP/IP协议的高级应用层协议。它借鉴了CIP协议,实现了在以太网上传输,为物联网和工业自动化提供了高效、灵活且安全的通信桥梁。通过EIP,各种设备和系统能够无缝地连接和交互,是现代工业网络的关键组成部分。
四、走进以太坊网络
目录
术语“以太坊节点”是指以某种方式与以太坊网络交互的程序。从简单的手机钱包应用程序到存储整个区块链副本的计算机,任何设备均可扮演以太坊节点。
所有节点都以某种方式充当通信点,但以太坊网络中的节点分为多种类型。
与比特币不同,以太坊找不到任何程序作为参考实施方案。在比特币生态系统中,比特币核心是主要节点软件,以太坊黄皮书则提出了一系列独立(但兼容)的程序。目前最流行的是Geth和Parity。
若要以允许独立验证区块链数据的方式连接以太坊网络,则应使用之前提到的软件运行全节点。
该软件将从其他节点下载区块,并验证其所含交易的正确性。软件还将运行调用的所有智能合约,确保接收的信息与其他节点相同。如果一切按计划运行,我们可以认为所有节点设备均存储相同的区块链副本。
全节点对于以太坊的运行至关重要。如果没有遍布全球的众多节点,网络将丧失其抗审查性与去中心化特性。
通过运行全节点,您可以直接为网络的健康和安全发展贡献一份力量。然而,全节点通常需要使用独立的机器完成运行和维护。对于无法(或单纯不愿)运行全节点的用户,轻节点是更好的选择。
顾名思义,轻节点均为轻量级设备,可显著降低资源和空间占用率。手机或笔记本电脑等便携式设备均可作为轻节点。然而,降低开销也要付出代价:轻节点无法完全实现自给自足。它们无法与整条区块链同步,需要全节点提供相关信息。
轻节点备受商户、服务供应商和用户的青睐。在不必使用全节点并且运行成本过高的情况下,它们广泛应用于支收付款。
挖矿节点既可以是全节点客户端,也可以是轻节点客户端。“挖矿节点”这个术语的使用方式与比特币生态系统不同,但依然应用于识别参与者。
如需参与以太坊挖矿,必须使用一些附加硬件。最常见的做法是构建矿机。用户通过矿机将多个GPU(图形处理器)连接起来,高速计算哈希数据。
矿工可以选择两种挖矿方案:单独挖矿或加入矿池。单独挖矿表示矿工独自创建区块。如果成功,则独享挖矿奖励。如果加入矿池,众多矿工的哈希算力会结合起来。出块速度得以提升,但挖矿奖励将由众多矿工共享。
区块链最重要的特性之一就是“开放访问”。这表明任何人均可运行以太坊节点,并通过验证交易和区块强化网络。
与比特币相似,许多企业都提供即插即用的以太坊节点。如果只想启动并运行单一节点,这种设备无疑是最佳选择,缺点是必须为便捷性额外付费。
如前文所述,以太坊中存在众多不同类型的节点软件实施方案,例如Geth和Parity。若要运行个人节点,必须掌握所选实施方案的安装流程。
除非运行名为归档节点的特殊节点,否则消费级笔记本电脑足以支持以太坊全节点正常运行。不过,最好不要使用日常工作设备,因为节点会严重拖慢运行速度。
运行个人节点时,建议设备始终在线。倘若节点离线,再次联网时可能耗费大量的时间进行同步。因此,最好选择造价低廉并且易于维护的设备。您甚至可以通过Raspberry Pi运行轻节点。
随着网络即将过渡到权益证明机制,以太坊挖矿不再是最安全的长期投资方式。过渡成功后,以太坊矿工只能将挖矿设备转入其他网络或直接变卖。
鉴于过渡尚未完成,参与以太坊挖矿仍需使用特殊硬件(例如GPU或ASIC)。若要获得可观收益,则必须定制矿机并寻找电价低廉的矿场。此外,还需创建以太坊钱包并配置相应的挖矿软件。这一切都会耗费大量的时间和资金。在参与挖矿前,请认真考量自己能否应对各种挑战。(国内严禁挖矿,切勿以身试法)
ProgPow代表程序化工作量证明。这是以太坊挖矿算法Ethash的扩展方案,旨在提升GPU的竞争力,使其超过ASIC。
在比特币和以太坊社区,抗ASIC多年来一直是饱受争议的话题。在比特币网络中,ASIC已经成为主要的挖矿力量。
在以太坊中,ASIC并不是主流,相当一部分矿工仍然使用GPU。然而,随着越来越多的公司将以太坊ASIC矿机引入市场,这种情况很快就会改变。然而,ASIC到底存在什么问题呢?
一方面,ASIC明显削弱网络的去中心化。如果GPU矿工无法盈利,不得不停止挖矿,哈希率最终就会集中在少数矿工手中。此外,ASIC芯片的开发成本相当昂贵,坐拥开发能力与资源的公司屈指可数。这种现状有可能导致以太坊挖矿产业集中在少数公司手中,形成一定程度的行业垄断。
自2018年以来,ProgPow的集成一直饱受争议。有些人认为,它有益于以太坊生态系统的健康发展。另一些人则持反对态度,认为它可能导致硬分叉。随着权益证明机制的到来,ProgPoW能否应用于网络仍然有待观察。
以太坊与比特币是一样,均为开源平台。所有人都可以参与协议开发,或基于协议构建应用程序。事实上,以太坊也是区块链领域目前最大的开发者社区。
Andreas Antonopoulos和Gavin Wood出品的 Mastering Ethereum,以及Ethereum.org推出的开发者资源等都是新晋开发者理想的入门之选。
智能合约的概念于20世纪90年代首次提出。其在区块链中的应用带来了一系列全新挑战。2014年由Gavin Wood提出的Solidity已经成为开发以太坊智能合约的主要编程语言,其语法与Java、JavaScript以及C++类似。
从本质上讲,使用Solidity语言,开发者可以编写在分解后可由以太坊虚拟机(EVM)解析的指令。您可以通过Solidity GitHub详细了解其工作原理。
其实,Solidity语言并非以太坊开发者的唯一选择。Vyper也是一种热门的开发语言,其语法更接近Python。