比特币如何做到保密 比特币加密

发布时间:2026-01-11 19:12:01 浏览:2 分类:比特币资讯
大小:509.7 MB 版本:v6.141.0
欧易官网正版APP,返佣推荐码:61662149

一、比特币如何算出来的

从比特币的本质说起,比特币的本质其实就是一堆复杂算法所生成的特解。特解是指方程组所能得到有限个解中的一组。而每一个特解都能解开方程并且是唯一的。

以钞票来比喻的话,比特币就是钞票的冠字号码,知道了某张钞票上的冠字号码,就拥有了这张钞票。而挖矿的过程就是通过庞大的计算量不断的去寻求这个方程组的特解,这个方程组被设计成了只有 2100万个特解,所以比特币的上限就是 2100万个。

要挖掘比特币可以下载专用的比特币运算工具,然后注册各种合作网站,把注册来的用户名和密码填入计算程序中,再点击运算就正式开始。完成Bitcoin客户端安装后,可以直接获得一个Bitcoin地址,当别人付钱的时候,只需要自己把地址贴给别人,就能通过同样的客户端进行付款。

在安装好比特币客户端后,它将会分配一个私钥和一个公钥。需要备份你包含私钥的钱包数据,才能保证财产不丢失。如果不幸完全格式化硬盘,个人的比特币将会完全丢失。

钱包

比特币钱包使用户可以检查、存储、花费其持有的比特币,其形式多种多样,功能可繁可简,它可以是遵守比特币协议运行的各种工具,如电脑客户端、手机客户端、网站服务、专用设备;

也可以只是存储著比特币私密密钥的介质,如一张纸、一段暗号、一个快闪U盘、一个文本文档,因为只要掌握比特币的私密密钥,就可以处置其对应地址中包含的比特币。比特币无法存入一般的银行账户,交易只能在比特币网络上进行,使用前需下载客户端或接入线上网络。

二、高中生如何理解比特币加密算法

加密算法是数字货币的基石,比特币的公钥体系采用椭圆曲线算法来保证交易的安全性。这是因为要攻破椭圆曲线加密就要面对离散对数难题,目前为止还没有找到在多项式时间内解决的办法,在算法所用的空间足够大的情况下,被认为是安全的。本文不涉及高深的数学理论,希望高中生都能看懂。

密码学具有久远的历史,几乎人人都可以构造出加解密的方法,比如说简单地循环移位。古老或简单的方法需要保密加密算法和秘钥。但是从历史上长期的攻防斗争来看,基于加密方式的保密并不可靠,同时,长期以来,秘钥的传递也是一个很大的问题,往往面临秘钥泄漏或遭遇中间人攻击的风险。

上世纪70年代,密码学迎来了突破。Ralph C. Merkle在1974年首先提出非对称加密的思想,两年以后,Whitfield Diffie和Whitfield Diffie两位学者以单向函数和单向暗门函数为基础提出了具体的思路。随后,大量的研究和算法涌现,其中最为著名的就是RSA算法和一系列的椭圆曲线算法。

无论哪一种算法,都是站在前人的肩膀之上,主要以素数为研究对象的数论的发展,群论和有限域理论为基础。内容加密的秘钥不再需要传递,而是通过运算产生,这样,即使在不安全的网络中进行通信也是安全的。密文的破解依赖于秘钥的破解,但秘钥的破解面临难题,对于RSA算法,这个难题是大数因式分解,对于椭圆曲线算法,这个难题是类离散对数求解。两者在目前都没有多项式时间内的解决办法,也就是说,当位数增多时,难度差不多时指数级上升的。

那么加解密如何在公私钥体系中进行的呢?一句话,通过在一个有限域内的运算进行,这是因为加解密都必须是精确的。一个有限域就是一个具有有限个元素的集合。加密就是在把其中一个元素映射到另一个元素,而解密就是再做一次映射。而有限域的构成与素数的性质有关。

前段时间,黎曼猜想(与素数定理关系密切)被热炒的时候,有一位区块链项目的技术总监说椭圆曲线算法与素数无关,不受黎曼猜想证明的影响,就完全是瞎说了。可见区块链项目内鱼龙混杂,确实需要好好洗洗。

比特币及多数区块链项目采用的公钥体系都是椭圆曲线算法,而非RSA。而介绍椭圆曲线算法之前,了解一下离散对数问题对其安全性的理解很有帮助。

先来看一下费马小定理:

原根定义:

设(a, p)=1(a与p互素),满足

的最下正整数 l,叫作a模p的阶,模p阶为(最大值)p-1的整数a叫作模p的原根。

两个定理:

基于此,我们可以看到,{1, 2, 3,… p-1}就是一个有限域,而且定义运算 gi(mod p),落在这个有限域内,同时,当i取0~p-2的不同数时,运算结果不同。这和我们在高中学到的求幂基本上是一样的,只不过加了一层求模运算而已。

另一点需要说明的是,g的指数可以不限于0~p-2,其实可以是所有自然数,但是由于

所以,所有的函数值都是在有限域内,而且是连续循环的。

离散对数定义:

设g为模p的原根,(a,p)= 1,

我们称 i为a(对于模p的原根g)的指数,表示成:

这里ind就是 index的前3个字母。

这个定义是不是和log的定义很像?其实这也就是我们高中学到的对数定义的扩展,只不过现在应用到一个有限域上。

但是,这与实数域上的对数计算不同,实数域是一个连续空间,其上的对数计算有公式和规律可循,但往往很难做到精确。我们的加密体系里需要精确,但是在一个有限域上的运算极为困难,当你知道幂值a和对数底g,求其离散对数值i非常困难。

当选择的素数P足够大时,求i在时间上和运算量上变得不可能。因此我们可以说i是不能被计算出来的,也就是说是安全的,不能被破解的。

比特币的椭圆曲线算法具体而言采用的是 secp256k1算法。网上关于椭圆曲线算法的介绍很多,这里不做详细阐述,大家只要知道其实它是一个三次曲线(不是一个椭圆函数),定义如下:

那么这里有参数a, b;取值不同,椭圆曲线也就不同,当然x, y这里定义在实数域上,在密码体系里是行不通的,真正采用的时候,x, y要定义在一个有限域上,都是自然数,而且小于一个素数P。那么当这个椭圆曲线定义好后,它反应在坐标系中就是一些离散的点,一点也不像曲线。但是,在设定的有限域上,其各种运算是完备的。也就是说,能够通过加密运算找到对应的点,通过解密运算得到加密前的点。

同时,与前面讲到的离散对数问题一样,我们希望在这个椭圆曲线的离散点阵中找到一个有限的子群,其具有我们前面提到的遍历和循环性质。而我们的所有计算将使用这个子群。这样就建立好了我们需要的一个有限域。那么这里就需要子群的阶(一个素数n)和在子群中的基点G(一个坐标,它通过加法运算可以遍历n阶子群)。

根据上面的描述,我们知道椭圆曲线的定义包含一个五元祖(P, a, b, G, n, h);具体的定义和概念如下:

P:一个大素数,用来定义椭圆曲线的有限域(群)

a, b:椭圆曲线的参数,定义椭圆曲线函数

G:循环子群中的基点,运算的基础

n:循环子群的阶(另一个大素数,< P)

h:子群的相关因子,也即群的阶除以子群的阶的整数部分。

好了,是时候来看一下比特币的椭圆曲线算法是一个怎样的椭圆曲线了。简单地说,就是上述参数取以下值的椭圆曲线:

椭圆曲线定义了加法,其定义是两个点相连,交与图像的第三点的关于x轴的对称点为两个点的和。网上这部分内容已经有很多,这里不就其细节进行阐述。

但细心的同学可能有个疑问,离散对数问题的难题表现在求幂容易,但求其指数非常难,然而,椭圆曲线算法中,没有求幂,只有求乘积。这怎么体现的是离散对数问题呢?

其实,这是一个定义问题,最初椭圆曲线算法定义的时候把这种运算定义为求和,但是,你只要把这种运算定义为求积,整个体系也是没有问题的。而且如果定义为求积,你会发现所有的操作形式上和离散对数问题一致,在有限域的选择的原则上也是一致的。所以,本质上这还是一个离散对数问题。但又不完全是简单的离散对数问题,实际上比一般的离散对数问题要难,因为这里不是简单地求数的离散对数,而是在一个自定义的计算上求类似于离散对数的值。这也是为什么椭圆曲线算法采用比RSA所需要的(一般2048位)少得多的私钥位数(256位)就非常安全了。

三、比特币为什么那么值钱

比特币为什么那么值钱?

比特币疯狂升值备受关注,从高晓松的微博就能看出其火热程度。前些年零零星星的听到关于比特的报道,随着今年比特币疯狂升值,这个少数人玩的科技产物,走进了大众的视野。比特币为什么值钱,我们从这几个方面来分析。

物以稀为贵,比特币是2009被中本聪发明出来的,通过区块链技术运算而产生的电子货币。这种技术的设计使得比特币理论上只能生产2100万枚,在数量上具有稀缺性。那么就会有人问为什么以前比特币也不贵啊,现在为什么疯狂升值。原因就是没有满足人们的需求。比特币区别于传统货币,本身没有价值,更像是一项大型社会实践,起初由于数量过少,根本没有任何用途,随着时间的推移,比特币的大部分已经被挖出来,人们渐渐意识到由区块链技术带来的方便。这种特殊的技术,使得比特币能打破资金国际流通限制,交易无法被追踪,这让那些从事非法交易的黑市商人看到了希望,需求量大增,为了能够完成大额不明财产交易,数量有限的比特币上涨成了必然。民间炒币也十分火热。这些从国外舶来的投资项目,以高风险、高回报吸引大批投资者跟进,无形中也加快了类似于比特币这样的虚拟货币升值。这让我联想到了公司的上市过程。比特币做为原始股票基本发行完毕,被某些人大量囤积抢购后,好比公司IPO,原始股格一飞冲天,引起大量围观者跃跃欲试,最终获益人无疑是原始最先的比特币持有者,而比特币的保密性,让这些人的身份也成了未解之谜。

事实上,比特币(BitCoin)的概念最初由中本聪在2009年提出,是一种数字化的黄金。类似开采金矿,比特币也是从网络中开采而来―用户通过电脑解决一个特定数学问题,便能得到50个比特币,其汇率则是由Mt.Gox这样的比特币交易所确定。

目前比特币已经越过14000大关,并继续呈上涨趋势。

首先,比特币和普通货币有一定的差异性

比特币交易非常方便,只要在电脑上下载一个客户端,任何两个人都可以进行相应交易;另外比特币覆盖面也很广,目前比特币可以和大多数货币兑换,而其他虚拟货币却很难做到,像Paypal,也仅仅覆盖了60多个国家而已。

其次,比特币技术稀缺性很高

比特币是由一系列算法,通过比特币挖矿机工作进行资源获取;第一,由于算法复杂,安全性很高,持币人拥有一串数字码作为比特币的安全锁,(类似于游戏账号的密码之类的),这种方式极大的提高的比特币的不可复制性;第二,比特币挖矿机的显卡供给也越来越少,所以其稀缺性也会很高,相应价值也会很高。

最后,比特币逐渐受到各平台的认可

目前,有些国家承认比特币,例如德国、日本、加拿大等国均承认了其货币合法地位。另外,市场的推动也会推动比特币的价格上涨,例如Bitfinex、火币网、ANX等,由于其支持比特币交易,影响了比特币价格的上升。再加上有些平台已经开始测试比特币支付,使得人们对比特币的前景很看好,纷纷入场,所以价格也在一路飙升。

而互联网时代的到来以及法币时代不断爆发的经济危机让无数热爱和平的民众产生了反思。

而比特币之所以能被芝加哥期货交易所认定为合法货币主要由以下几个因素:

因为比特币是第一个区块链货币,有收藏价值,有全球知名度,有凝聚共识的天然属性,货币的本质就是共识,未来有成为数字古董的潜质,区块链货币大片江山都是比特币一个人打下来的。

匿名性,没有任何人能剥夺你的比特币财产,只要你记住密钥(没收财产、社会动荡分土地等事情不可能存在)

便携性,战乱法币不值钱,黄金难运输,比特币你拍屁股就能走人(近期半岛局势紧张导致韩国大举购入比特币,韩国地区比特币突破2万五美元,黄金暴跌《以前都是黄金暴涨的》,这次黄金价值体现被比特币碾压了。

交易方便性,全球跨境交易无障碍,低手续费,只要有互联网。

神秘性,体验特工007超酷密钥性。中本聪神一样的人物存在(世界首富只是时间问题)大家都不知道他是谁。手上的几个代码就价值不菲,超级酷的007密码学体验。

成本高,比特币生产成本极高,2020年减产一半,机制是越来越难挖矿。

合法性,几乎所有国家都没有宣布比特币违法,包括我国,发达国家对比特币还非常友好,如日本。

高收益性,比特币已经涨了1000万倍,堪称人类历史最大泡沫!这个收益率吸引了无数投资者参与,控制好风险就好,在自己风险承受范围能投资。

想到暂时就这么多,比特币唯一风险是安全,安全性没了,比特币也就没有任何意义,目前看理论上是绝对安全的。