比特币alice alice币

发布时间:2026-01-05 17:52:02 浏览:3 分类:比特币资讯
大小:509.7 MB 版本:v6.141.0
欧易官网正版APP,返佣推荐码:61662149

一、比特币机制研究

现今世界的电子支付系统已经十分发达,我们平时的各种消费基本上在支付宝和微信上都可以轻松解决。但是无论是支付宝、微信,其实本质上都依赖于一个中心化的金融系统,即使在大多数情况这个系统运行得很好,但是由于信任模型的存在,还是会存在着仲裁纠纷,有仲裁纠纷就意味着不存在不可撤销的交易,这样对于不可撤销的服务来说,一定比例的欺诈是不可避免的。在比特币出来之前,不存在一个不引入中心化的可信任方就能解决在通信通道上支付的方案。

比特币的强大之处就在于:它是一个基于密码学原理而不是依赖于中心化机构的电子支付系统,它能够允许任何有交易意愿的双方能直接交易而不需要一个可信任的第三方。交易在数学计算上的不可撤销将保护提供不可撤销服务的商家不被欺诈,而用来保护买家的程序化合约机制也比较容易实现。

假设网络中有A, B,C三个人。

A付给B 1比特币,B付给C 2比特币,C付给A 3比特币。

如下图所示:

为了刺激比特币系统中的用户进行记账,记账是有奖励的。奖励来源主要有两方面:

比特币中每一笔交易都会有手续费,手续费会给记账者

记账会有打包区块的奖励,中本聪在08年设计的方案是:每10分钟打一个包,每打一个包奖励50个比特币,每4年单次打包的奖励数减半,即4年后每打一个包奖励25个比特币,再过四年后就奖励12.5个比特币...这样我们其实可以算出比特币的总量:

要说明打包的记录以谁为准的问题,我们需要引入一个知名的拜占庭将军问题(Byzantine failures)。拜占庭将军问题是由莱斯利·兰伯特提出的点对点通信中的基本问题。含义是在存在消息丢失的不可靠信道上试图通过消息传递的方式达到一致性是不可能的。

假设有9个互相远离的将军包围了拜占庭帝国,除非有5个及以上的将军一起攻打,拜占庭帝国才能被打下来。而这9个将军之间是互不信任的,他们并不知道这其中是否有叛徒,那么如何通过远距离协商来让他们赢取战斗呢?

口头协议有3个默认规则:

1.每个信息都能够被准确接收

2.接收者知道是谁发送给他的

3.谁没有发送消息大家都知道

4.接受者不知道转发信息的转发者是谁

将军们遵循口头规则的话,那就是下面的场景:将军1对其他8个将军发送了信息,然后将军2~9将消息进行转达(广播),每个将军都是消息的接受者和转发者,这样一轮下来,总共就会有9×8=72次发送。这样将军就可以根据自己手中的信息,选择多数人的投票结果行动即可,这个时候即便有间谍,因为少数服从多数的原则,只要大部分将军同意攻打拜占庭,自己就去行动。

这个方案有很多缺点:

1.首先是发送量大,9个将军之间要发送72次,随着节点数的增加,工作量呈现几何增长。

2.再者是无法找出谁是叛徒,因为是口头协议,接受者不知道转发信息的转发者是谁,每个将军手里的数据仅仅只是一个数量的对比:

这里我们假设有3个叛徒,在一种最极端的情况下即叛徒转发信息时总是篡改为“不进攻”,那么我们最坏的结果就如上图所示。将军1根据手里的信息可以推出要进攻的结论,却无法获知将军里面谁是叛徒。

这样我们就有了方案二:书面协议。

书面协议即将军在接受到信息后可以进行签字,并且大家都能够识别出这个签字是否是本人,换种说法就是如果有人篡改签字大家可以知道。书面协议相对比口头协议就是增加了一个认证机制,所有的消息都有记录。一旦发现有人所给出的信息不一致,就是追查间谍。

有了书面协议,那么将军1手里的信息就是这样的:

可以很明显得看出,在最坏的一种情况——叛徒总是转发“不进攻”的消息之下,将军7、8、9是团队里的叛徒。

这个方案解决了口头协议里历史信息不可追溯的问题,但是在发送量方面并没有做到任何改进。

在我们的示例中,比特币系统里的每个用户发起了一笔交易,都会通过自己的私钥进行签名,用数学公式表示就是:

所以之前的区块就变成了这样:

这样每一笔交易都由交易发起者通过私钥进行数字签名,由于私钥是不公开的,所以交易信息也就无法被伪造了。

如书面协议末尾所说的那样,书面协议未能解决信息交流过多的问题。当比特币系统中存在上千万节点的时候,如果要互相广播验证,请求响应的次数那将是一个非常庞大的数字,显然势必会造成网络拥堵、节点处理变慢。为了解决这个问题,中本聪干脆让整个10分钟出一个区块,这个区块由谁来打包发出呢?这里就采用了工作量证明机制(PoW)。工作量证明,说白了就是解一个数学题,谁先解出来数学题,谁就能有打包区块的权力。换在拜占庭将军的例子中就是,谁先做出数学题,谁就成为将军们里面的总司令,其他将军听从他发号的命令。

首先,矿工会将区块头所占用的128字节的字符串进行两次sha256求值,即:

这样求得一个值Hash,将其与目标值相比对,如果符合条件,则视为工作量证明成功。

工作量证明成功的条件写在了区块链头部的难度数字段,它要求了最后进行两次sha256运算的Hash值必须小于定下的目标值;如果不是的话,那就改变区块头的随机数(nonce),通过一次次地重复计算检验,直到符合条件为止。

此外,比特币有自己的一套难度控制系统,使得比特币系统要在全网不同的算力条件下,都保持10分钟生成一个区块的速率。这也就意味着:难度值必须根据全网算力的变化进行调整。难度调整的策略是由最新2016个区块的花费时长与期望时长(期望时长为20160分钟即两周,是按每10分钟一个区块的产生速率计算出的总时长)比较得出的,根据实际时长与期望时长的比值,进行相应调整(或变难或变易)。也就是说,如果区块产生的速率比10分钟快则增加难度,比10分钟慢则降低难度。

PoW其实在比特币中是做了以下的三件事情。

这样可以防止一台高性能机器同时跑上万个节点,因为每完成一个工作都要有足够的算力。

有经济奖励就会加速整个系统的去中心化,也鼓励大家不要去作恶,要积极地按照协议本来的执行方式去执行。(所以说,无币区块链其实是不可行的,无币区块链一定导致中心化。)

也就是说,每个节点都不能以自身硬件条件去控制出快速度。现在的比特币上平均10分钟出一个块,性能再好的机器也无法打破这个规则,这就能够保证区块链是可以收敛到共同的主链上的,也就是我们所说的共识。

综上,共识只是PoW三个作用中的一点,事实上PoW设计的作用有点至少有这么三种。

默克尔树的概念其实很简单,如图所示

这样,我们区块的结构就大致完整了,这里分成了区块头和区块体两部分。

区块链的每个节点,都保存着区块链从创世到现在的每一区块,即每一笔交易都被保存在节点上,现在已经有几百个GB了。

每当比特币系统中有一笔新的交易生成,就会将新交易广播到所有的节点。每个节点都把新交易收集起来,并生成对应的默克尔根,拼接完区块头后,就开始调整区块头里的随机数值,然后就开始算数学题

将算出的result和网络中的目标值进行比对,如果是结果是小于的话,就全网广播答案。其他矿工收到了这个信息后,就会立马放下手里的运算,开始下一个区块的计算。

举个例子,当前A节点在挖38936个区块,A挖矿节点一旦完成计算,立刻将这个区块发给它的所有相邻节点。这些节点在接收并验证这个新区块后,也会继续传播此区块。当这个新区块在网络中扩散时,每个节点都会将它作为第38936个区块(前一个区块为38935)加到自身节点的区块链副本中。当挖矿节点收到并验证了这个新区块后,它们会放弃之前对构建这个相同高度区块的计算,并立即开始计算区块链中下一个区块的工作。

整个流程就像下一张图所展示的这样:

简单来说,双花问题是一笔钱重复花了两次。具体来讲,双花问题可分为两种情况:

1.同一笔钱被多次使用;

2.一笔钱只被使用过一次,但是通过黑客攻击或造假等方式,将这笔钱复制了一份,再次使用。

在我们生活的数字系统中,由于数据的可复制性,使得系统可能存在同一笔数字资产因不当操作被重复使用的情况,为了解决双花问题,日常生活中是依赖于第三方的信任机构的。这类机构对数据进行中心化管理,并通过实时修改账户余额的方法来防止双重支付的出现。而作为去中心化的点对点价值传输系统,比特币通过UTXO、时间戳等技术的整合来解决双花问题。

UTXO的英文全称是 unspent transaction outputs,意为未使用的交易输出。UTXO是一种有别于传统记账方式的新的记账模型。

银行里传统的记账方式是基于账户的,主要是记录某个用户的账户余额。而UTXO的交易方式,是基于交易本身的,甚至没有账户的概念。在UTXO的记账机制里,除了货币发行外,所有的资金来源都必须来自于前面某一个或几个交易。任何一笔的交易总量必须等于交易输出总量。UTXO的记账机制使得比特币网络中的每一笔转账,都能够追溯到它前面一笔交易。

比特币的挖矿节点获得新区块的挖矿奖励,比如 12.5个比特币,这时,它的钱包地址得到的就是一个 UTXO,即这个新区块的币基交易(也称创币交易)的输出。币基交易是一个特殊的交易,它没有输入,只有输出。

当甲要把一笔比特币转给乙时,这个过程是把甲的钱包地址中之前的一个 UTXO,用私钥进行签名,发送到乙的地址。这个过程是一个新的交易,而乙得到的是一个新的 UTXO。

这就是为什么有人说在这个世界上根本没有比特币,只有 UTXO,你的地址中的比特币是指没花掉的交易输出。

以Alice向Bob进行转账的过程举例的话:

UTXO与我们熟悉的账户概念的差别很大。我们日常接触最多的是账户,比如,我在银行开设一个账户,账户里的余额就是我的钱。

但在比特币网络中没有账户的概念,你可以有多个钱包地址,每个钱包地址中都有着多个 UTXO,你的钱是所有这些地址中的 UTXO加起来的总和。

中本聪发明比特币的目标是创建一个点对点的电子现金,UTXO的设计正可以看成是借鉴了现金的思路:我们可能在这个口袋里装点现金,在那个柜子角落里放点现金,在这种情况下不存在一个账户,你放在各处的现金加起来就是你所有的钱。

采用 UTXO设计还有一个技术上的理由,这种特别的数据结构可以让双重花费更容易验证。对比一下:

二、比特币默认数字储备货币

比特币为王——它仍然是我们生活中表现最好的资产。它让最严厉的批评者保持沉默,并且在采用、可用性和相关性方面继续增长。比特币仅用了 12年就实现了这一切,这一事实令人瞩目。然而,自比特币区块链诞生以来,有一个非常真实的幽灵一直困扰着它:速度。随着采用继续将数十亿机构资金、零售、风险投资甚至整个国家带入比特币生态系统,我们正面临着拥堵和吞吐量问题,许多人担心这些问题会阻碍比特币实现其所有崇高的革命性目标。尽管如此,即使山寨币的兴起和比特币面临的可扩展性挑战,它仍将继续取得成功,并不可避免地成为世界经济的主要数字储备货币。如何?带着一道闪电。

比特币的可扩展性挑战

如果区块链网络无法扩展以满足全球数字经济的需求,那么实现主流采用就没有希望。可扩展性有很多衡量标准,但最常见的是吞吐量(每秒事务数或 TPS)。就上下文而言,Visa的支付网络每秒可以处理约 24,000笔交易,但实际上只需要每秒完成约 1,700笔交易。相比之下,比特币每秒处理四到五笔交易——换句话说,比特币慢得令人痛苦。比特币的延迟在很大程度上推动了山寨币的兴起:Cardano、Nano和 Solana仅举几例,与比特币相比,它们都宣传高交易吞吐量。

许多比特币用户会争辩说,速度并不是比特币的最终目标,比特币的主要目的是作为一种价值储存手段和对冲通胀的对冲。诚然,确实需要通过时间来保存财富,以避开对委内瑞拉、津巴布韦、阿根廷和伊朗等国家造成严重破坏的法定货币通货膨胀的破坏。然而,比特币纯粹主义者从不怀疑比特币也应该实现中本聪比特币白皮书中提出的点对点电子现金系统的最初愿景。

那么,除了价值存储之外,比特币是如何实现作为全球货币和交换手段的这一愿景的呢?

比特币现金硬分叉是可扩展性的一种潜在解决方案:通过增加块大小,一次可以包含更多交易。然而,比特币现金每秒只能处理微薄的 116笔交易(它在采用测试中也惨败)。输入:闪电网络。

闪电网络的工作原理是将主要比特币区块链的容量卸载到第二层支付渠道。由于比特币的可扩展性问题是由每笔交易都必须广播到整个网络并包含在比特币主区块链中这一事实驱动的,因此通过利用闪电网络,两个实体可以在它们之间打开支付通道,以实现即时和无摩擦的支付。交易广播到整个链的唯一时间是当它们打开或关闭通道时。 Lightning的真正魔力在于,您无需与某人打开频道即可与他们进行交易。网络知道如何通过现有渠道从发送者到接收者汇款。假设 Alice和 Bob有一个频道,Bob和 Charlie有一个频道,Alice可以通过他们共同的朋友 Bob来支付给 Charlie。突然之间,每秒 4.5笔交易可以扩展到数十亿。

即使闪电网络一直在使用并越来越受欢迎,但比特币要想成为世界的数字储备货币,还必须克服其他障碍。自从尼克松在 1971年打破美元脱离金本位制以来,美元一直处于通货膨胀状态,现在每年贬值近 4%。事实上,任何法定货币都不可避免地会出现通货膨胀,但比特币等数字货币的兴起提供了一种不受法定货币失败影响的替代方案。

一枚硬币来统治他们

随着闪电网络的普及,比特币将实现中本聪作为价值存储和支付手段的初衷。我们已经可以看到比特币被专业地定位为主要货币形式的多种原因。它通常是加密货币领域的新手获得的第一个加密货币。它是世界上最著名、最受推崇和普遍持有的加密货币。比特币也有无穷无尽的用例,作为几乎所有中心化交易所、DEX和几乎任何可以找到的 DeFi平台的通用交换形式。在闪电等快速、高吞吐量的覆盖网络的额外帮助下,比特币有可能成为未来的全球储备货币。

这是 Sagi Bakshi的客座帖子。表达的观点完全是他们自己的观点,不一定反映 BTC, Inc.或 Bitcoin Magazine的观点。

#数字货币##比特币[超话]#

三、java ecc加密

java ecc加密是什么,让我们一起了解一下:

ecc是椭圆曲线密码,利用椭圆曲线来实现的密码技术的统称,java中ecc加密通过使用JPBC库调用ECC椭圆曲线加解密算法,能够编写简单的实验代码进行正确的ECC加密和解密。

为什么使用椭圆曲线加密算法?

RSA的解决分解整数问题需要亚指数时间复杂度的算法,而目前已知计算椭圆曲线离散对数问题(ECDLP)的最好方法都需要全指数时间复杂度。这意味着在椭圆曲线系统中我们只需要使用相对于RSA短得多的密钥就可以达到与其相同的安全强度。

例如,一般认为160比特的椭圆曲线密钥提供的安全强度与1024比特RSA密钥相当。使用短的密钥的好处在于加解密速度快、节省能源、节省带宽、存储空间。

比特币以及中国的二代身份证都使用了256比特的椭圆曲线密码算法。

ecc算法的过程是怎样的?

1、公私钥生成:

Alice首先构造一条椭圆曲线 E E E,在曲线上选择一点 G G G作为生成元,并求 G G G的阶为 n n n,要求 n n n必须为质数。

Alice选择一个私钥 k( k< n) k(k< n) k(k